Intelligent Signal Detection Under Spatially Correlated Noise
نویسندگان
چکیده
منابع مشابه
Random signal detection in correlated non-Gaussian noise
Le problème de la détection d’un signal aléatoire noyé dans un bruit additif non gaussien modélisé par un processus sphériquement invariant est adressé. Une structure asymptotiquement optimale pour la détection d’un signal gaussien est synthétisée. Les performances de cette structure de détection sont obtenues par des simulations de Monte Carlo. De plus, des comparaisons sont effectuées avec le...
متن کاملAmplitude Estimation of Multichannel Signal in Spatially and Temporally Correlated Noise
This paper examines the problem of complex amplitude estimation of a multichannel signal in the presence of colored noise with unknown spatial and temporal correlation. A number of amplitude estimators are developed, including the optimum maximum likelihood (ML) estimator, which involves nonlinear optimization, and several suboptimal but computationally more efficient estimators based on least-...
متن کاملSpace-time fading channel estimation and symbol detection in unknown spatially correlated noise
We present maximum likelihood (ML) methods for space–time fading channel estimation with an antenna array in spatially correlated noise having unknown covariance; the results are applied to symbol detection. The received signal is modeled as a linear combination of multipath-delayed and Doppler-shifted copies of the transmitted waveform. We consider structured and unstructured array response mo...
متن کاملVariance Analysis of Linear SIMO Models with Spatially Correlated Noise
Substantial improvement in accuracy of identified linear time-invariant single-input multi-output (SIMO) dynamical models is possible when the disturbances affecting the output measurements are spatially correlated. Using an orthogonal representation for the modules composing the SIMO structure, in this paper we show that the variance of a parameter estimate of a module is dependent on the mode...
متن کاملSpatially correlated noise and variance minimization in stochastic simulations
Brownian simulation methods have become a popular approach in computational rheology with the introduction of the CONNFFESSIT algorithmand themethod of Brownian configuration fields in the 1990s. Jourdain et al. [B. Jourdain, C.L. Bris, T. Lelievre, On a variance reduction technique formicro–macro simulations of polymeric fluids, J. Non-Newton. Fluid Mech. 122 (2004) 91–106] pointed out that bo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.3035793